

Available online at www.sciencedirect.com

Polymer 46 (2005) 5778-5788

polymer

www.elsevier.com/locate/polymer

Colorless and high organosoluble polyimides from 2,5-bis(3,4-dicarboxyphenoxy)-*t*-butylbenzene dianhydride and aromatic bis(ether amine)s bearing pendent trifluoromethyl groups

Chin-Ping Yang*, Yu-Yang Su

Department of Chemical Engineering, Tatung University, 40 Chungshan North Road, 3rd Section, Taipei 104, Taiwan, ROC

Received 2 November 2004; received in revised form 27 April 2005; accepted 28 April 2005 Available online 3 June 2005

Abstract

A series of polyimides III_{a-h} characterized by colorlessness, high transparency, high solubility, and good mechanical property, was synthesized from the aromatic dianhydride, 2,5-bis(3,4-dicarboxyphenoxy)-*t*-butylbenzene dianhydride (I), and various aromatic diamines (II_{a-h}) with pendent trifluoromethyl group via polyaddition, chemical imidization, and direct cast films. The III series showed more colorless than the polyimides (V and VI series) of 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) contained, the VI series was synthesized from the II with 6FDA. These films III had cut-off wavelengths between 371 and 376 nm, as well as *b** value (a yellowness index) ranging from 3.0 to 4.7. In fact, it is so far the most colorless aromatic polyimide in our systematical researches. The III series had inherent viscosity ranging from 0.72 to 1.33 dL/g and showed excellent solubility in a variety of organic solvents. They were soluble in a concentration of 5–10% in the amide polar solvent, ether solvent, and chlorinated solvent. These films showed strength tensile of 97–123 MPa, dielectric constants of 2.78–3.28 (1 MHz), and moisture absorptions of 0.11–0.36 wt%. The glass transition temperature of the III series was recorded at 214–259 °C, the 10% weight loss temperature was over 468 °C, and the residue was more than 47% at 800 °C in nitrogen.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: 2,5-Bis(3,4-dicarboxyphenoxy)-t-butylbenzene dianhydride; High organosoluble; Colorless

1. Introduction

Aromatic polyimides are a kind of high performance polymer, that have excellent thermal stabilities, chemical resistance, electric properties and mainly used in the aerospace and electronic industries in the form of films and moldings [1,2]. Depending on the application, optical transparency of polyimide films is of special importance, such as flexible solar radiation protectors [3], orientation films in liquid crystal display devices [4], and optical halfwaveplates for planar lightwave circuits [5]. However, most polyimides between UV and the visible area have strong absorption, rendering their color close to yellow or brown. In addition, they have poor processability in their imidized forms because of high softening temperatures and limited solubility.

By introducing the ether chain [6-8] or bulky group [9,10], the aromatic polyimide can raise the flexibility of polymer, reduce the melting point or the glass transition temperature, and modify solubility while maintaining the thermomechanical properties. For optical applications, a number of very lightly colored to colorless transparent polyimide films have been synthesized and characterized. The optically transparent and colorless polyimides (V series) could be synthesized from a dianhydride and a diamine with the hexafluoroisopropylidene group [11]. In addition, a lowering the formation of the charge-transfer complex (CTC) between alternating electron-donor (diamine) and electron-acceptor (dianhydride) moieties provides polyimide with lighter colored [12]. It had been also proved that polyimide with trifluoromethyl or the ether group can enhance the solubility and thermal stability, reduce dielectric constant and moisture absorption, and raise the optical transparency [13–15].

^{*} Corresponding author. Tel.: +886 2 25925252x2977; fax: +886 2 25861393.

E-mail address: cpyang@ttu.edu.tw (C.-P. Yang).

^{0032-3861/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.polymer.2005.04.077

Our laboratory has been discussing the polyimides prepared from 2,5-bis(3,4-dicarboxyphenoxy)-*t*-butylbenzene dianhydride (I) [16,17], one kind of organosoluble, lower colored, and thermostable material. In this study, polyimides III_{a-h} were synthesized from I with CF₃contained diamines II_{a-h} . We found that III_{a-h} were lighter-colored and even colorless. These polymers were investigated in terms of the color and optical transparency of film, solubility, and the mechanical, thermal, and dielectric properties.

2. Experimental

2.1. Materials

Aromatic dianhydride, 2,5-bis(3,4-dicarboxyphenoxy)-tbutylbenzene dianhydride (I), was synthesized from *tert*butylhydroquinone (t-BHQ; TCI) and 4-nitrophthalodinitrile (TCI). Acetonitrile (ALPS), N,N-dimethyl formamide (DMF; Fluka), and acetic anhydride (Ac₂O; Fluka) were used as received. The fluorinated aromatic diamines were synthesized from 2-chloro-5-nitrobenzotrifluoride (Acros) with bisphenols. 1,4-Hydroquinone (Acros), 4,4'-biphenyl (TCI), 3,3',5,5'-tetramethyl-4,4'-biphenyl (Mitsubishi Petrochemical Co., Japan), 2,5-di-tert-butylhydroquinone (Acros), 2,2-bis(4-hydroxyphenyl)propane (bisphenol-A; Acros), 2,2-bis(4-hydroxyphenol)hexafluoropropane (6Fbisphenol-A; Asahi glass Co., Ltd) and 9,9-bis(4-hydroxyphenyl)fluorene (Acros) were used as received. Other solvents included N-methy-2-pyrrolidone (NMP; Fluka), N,N-dimethylacetamide (DMAc; Fluka), and pyridine (Py; Wako).

2.2. Synthesis of 2,5-bis(3,4-dicarboxyphenoxy)-tbutylbenzene dianhydride (I)

Based on the literature [16,17], *t*-BHQ and 4-nitrophthalodinitrile were dissolved in the DMF with potassium carbonate to synthesize bis(ether dinitrile) at room temperature, and then were hydrolyzed to produce bis(ether diacid) before finally adding acetie anhydride to form bis(ether-dianhydride) monomer **I**, yield: 88%, mp: 211– 213 °C.

2.3. Synthesis of aromatic bis(ether amine)s bearing pendent trifluoromethyl groups

Take 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (\mathbf{H}_{a}) as an example. 1,4-Hydroquinone 20 mmol was dissolved in 20 ml of DMAc. Then, 2-chloro-5-nitrotrifluoromethylbenzene 40.5 mmol and potassium carbonate 35 mmol were added, and the mixture was heated at 110 °C for 12 h. The mixture was allowed to cool and poured into methanol/water (volume ratio of 10/1) to give a solid, which was collected, washed thoroughly with hot water and methanol, and dried, under vacuum. The crude product was recrystallized from DMF/CH₃OH to give di(ether-nitro)compound 1,4-bis(4-nitro-2-trifluoromethylphenoxy)benzene ($\mathbf{II'}_{a}$) 9.3 g (yield: 95%, mp: 221 °C) ([18] mp: 216 °C). $\mathbf{II'}_{a}$ and Pd/C (10%) 0.18 g were mixed in ethanol (100 ml), and hydrazine monohydrate 60 mmol was added to the stirred mixture at 80 °C until the evolution of nitrogen had ceased. The filtrate was then condensed to remove the solvent. The crude product was purified by recrystallization from ethanol to give white crystals 7.64 g (\mathbf{II}_{a}), yield: 93.5%, mp: 132–133 °C ([18] mp: 133.9 °C) ([19] mp: 126 °C). Elem. Anal. Calcd for C₂₀H₁₄N₂O₂F₆ (428.33): C, 56.08%; H, 3.29%; N, 6.54%. Found: C, 56.21%; H, 3.32%; N, 6.55%.

Other bis(ether-amine)s: 4,4'-bis(4-amino-2-trifluoromethylphenoxy)biphenyl (\mathbf{II}_{b}) [20], 4,4-bis(4-amino-2-trifluoromethylphenoxy)-3,3'5,5'-tetramethylbiphenyl (\mathbf{II}_{c}) [21], 1,4-bis(4-amino-2-trifluoromethylphenoxy)-2-*tert*butylbenzene (\mathbf{II}_{d}), 1,4-bis[4-amino-2-trifluoromethylphenoxy]-2,5-di-*tert*-butylbenzene (\mathbf{II}_{e}) [22], 2,2-bis[4-(4amino-2-trifluoromethylphenoxy)phenyl]propane (\mathbf{II}_{f}) [23], 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]hexafluoropropane (\mathbf{II}_{g}) [24], 9,9-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]fluorene (\mathbf{II}_{h}) [25] were prepared in an analogous manner.

2.4. Synthesis of polyimide

Diamine II_a (0.343 g, 0.8 mmol) was dissolved in 5.5 mL of dried DMAc. After diamine II_a was completely dissolved, dianhydride I (0.366 g, 0.8 mmol) was added in one portion. The mixture was stirred at room temperature for 10 h to obtain poly(amic acid) (PAA) solution. Then a 0.8 mL mixture of Ac₂O and pyridine (the volume ratio 2:1) was added to the PAA solution. The PAA solution was imidized by stirring in oil bath at 80 °C for 1 h, and then the solution was spread on a glass plate and placed in an 80-100 °C oven for 1 h to remove the solvent. Finally, the solution was sequentially heated from 100 to 250 °C at the rate of 20 °C/10 min and 250 °C for 30 min to remove the residual solvent. By soaking in water, a flexible polyimide film of III_a was self-stripped off the glass surface. Inherent viscosity of III_a was 0.78 dL/g in DMAc at a 0.5 g/dL concentration at 30 °C.

The typical IR spectrum of **III**_a is shown in Fig. 1. As the PAA was converted into the polyimide, the characteristic absorption bands of the imide ring were observed near 1778 (asymmetric C=O stretch) and 1725 (symmetric imide C=O stretch). Others were 1612–1486 (aromatic C=C stretch), 1376 (C–N stretching), 1245 (C–O), 1087, 742 cm⁻¹ (imide ring deformation) and some stronger peak of C–O and C–F stretching were in the range 1100–1300 cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆, δ , ppm): 7.98 (2H, s, H_{c,h}), 7.91 (2H, s, H_{a,g}), 7.72, 7.70 (2H, d, H_{j,j'}), 7.50, 7.48 (3H, d, H_{1,1',i}), 7.41 (1H, s, H_b), 7.25, 7.23 (2H, s, H_{m,f}), 7.21 (2H, d, H_{k,k'}), 7.11 (2H, s, H_{d,e}), 1.33 (1H, s, H_n). ¹³C

Fig. 1. FTIR spectra of polyimide III_a.

NMR (100 MHz, DMSO- d_6 , δ , ppm): 166.1, 166.0 (C^{27,27',27'',27''}), 163.0 (C^{3,13}), 162.7 (C²⁵), 154.4 (C¹⁰), 151.9 (C²²), 151.4 (C⁷), 150.0 (C¹²), 143.8 (C¹⁹), 134.4, 134.2 (C^{1,,15}), 133.28 (C^{5,17}), 126.7 (C²⁴), 126.2, 126.0 (C^{6,16}), 125.5, 125.2 (C^{4,18}), 123.4 (C²³), 123.0, 122.7 (C^{2,14}), 122.9 (C²⁸, quartet, ${}^{1}J_{C-F}$ =273 Hz), 121.6 (C²⁶), 119.7 (C⁸), 119.3 (C²¹, doublet, ${}^{2}J_{C-F}$ =31 Hz), 119.1 (C²⁰), 111.8 (C⁹), 111.3 (C¹¹), 34.62, 34.45 (C²⁹), 30.63, 29.75 (C³⁰) (Fig. 2).

NMR for **III**_g: ¹H NMR (500 MHz, DMSO- d_6 , δ , ppm): 7.94–7.98 (2H, t, H_{c,c'}), 7.82, 781 (2H, d, H_{a,a'}), 7.6–7.62 (2H, dd, H_{b,b'}), 7.50 (2H, s, H_g), 7.41–7.45 (6H, H_{k,h}), 7.26 (1H, s, H_f), 7.17, 7.15 (2H, d, H_{d,e}), 7.11, 7.10 (4H, d, H_j), 6.99 (2H, s, H_i), 1.40, 1.37 (9H, H_l). ¹³C NMR (100 MHz, DMSO- d_6 , δ , ppm): 166.2–166.1 (C^{30,30',30'',30'''}), 163.8, 163.7 (C^{3,13}), 156.7 (C²⁵), 153.7 (C²²), 151.5 (C¹⁰), 150.7 (C⁷), 144.8 (C²⁸), 134.1 (C^{12,24}), 132.0 (C²⁷), 131.2 (C¹⁹), 129.0 (C²⁰), 127 (C^{5,17}), 126.1 (C^{1,15}), 125.5 (C^{4,18}), 124.9 (C^{6,16}), 123.3 (C²³), 123.2 (C³¹, quartet, ¹ J_{C-F} =272 Hz), 123.1 (C⁸), 122.4 (C²¹, quartet, ² J_{C-F} =32 Hz), 121.1 (C³², quartet, ¹ J_{C-F} =272 Hz), 118.4 (C²⁹, doublet, ² J_{C-F} =32 Hz), 118.7 (C²⁶), 112.3, 112.1 (C^{9,11}), 35.13, 35.07 (C³³), 30 (C³⁴) (Fig. 3).

Polyimides III_{b-g} were synthesized in a similar manner. The elemental analysis results are shown in Table 1.

2.5. Measurements

IR spectra were recorded on a Horiba Fourier-transform infrared spectrometer FT-720 (FTIR). Elemental analyses were run on a Perkin–Elmer model 2400 CHN analyzer. Weight-average molecular weights ($\bar{M}_{\rm w}$'s) and numberaverage molecular weights ($\bar{M}_{\rm n}$'s) were obtained via gel permeation chromatography (GPC) on the basis of polystyrene calibration using Waters 2410 as an apparatus and tetrahydrofuran (THF) as the eluent. ¹H and ¹³C NMR spectra were measured on a Bruker AV-500 FT NMR spectrometer. Inherent viscosities were determined at 0.5 g/dL concentration with an Ubbelohde viscometer at 30 °C. Color intensity of the polymers was evaluated on a Macbeth color-eye colorimeter. Measurements were performed with films, with an observational angle of 10° and a Commission International de l'Eclairage (CIE)-D illuminant. A CIE LAB color difference equation was used. Ultraviolet-visible (UV-vis) spectra of the polymer films were recorded on a Shimadzu UV-1601 UV-vis spectrophotometer. Mechanical properties of the films were measured on an Instron model 1130 tensile tester with a 5 kg load cell at a crosshead speed of 5 cm/min on strips approximately 30-60 µm thick and 0.5 cm wide with a 2 cm gauge length. An average of at least five individual determinations was used. Thermogravimetric analysis (TGA) was conducted with a TA Instruments TGA 2050. Measurements were carried out on 9-11 mg film samples heated in flowing nitrogen or air (90 cm³/min) at a heating rate of 20 °C/min. The differential scanning calorimetry (DSC) analyses were measured on a TA Instruments DSC 2010 at a heating rate of 15 °C/min in flowing nitrogen $(40 \text{ cm}^3/\text{min})$. The dielectric property of the polymer films was tested by the parallel-plate capacitor method with a Hewlett Packard 4194A dielectric analyzer. Gold electrodes were vacuum-deposited on both surfaces of dried films. Experiments were performed at 25 °C in a dry chamber. The equilibrium moisture absorption was determined by the weighing of the changes in vacuum-dried film specimens before and after immersion in deionized water at 25 °C for 3 days.

3. Results and discussion

3.1. Polymer synthesis

Polyimides III_{a-h} were synthesized from dianhydride I

5782

Table 1Elemental analysis of polyimides III

Polymer code	Formula of PEI (formula weight)		С	Н	Ν	
III _a	$(C_{46}H_{28}F_6N_2O_8)_n$	Calcd	64.95	3.32	3.29	
	(850.73) _n	Found	64.63	3.24	3.22	
III _b	$(C_{52}H_{32}F_6N_2O_8)_n$	Calcd	67.39	3.48	3.02	
	(926.83) _n	Found	67.18	3.37	2.92	
III _c	$(C_{56}H_{40}F_6N_2O_8)_n$	Calcd	68.43	4.10	2.85	
	(982.93) _n	Found	68.17	4.10	2.85	
III _d	$(C_{50}H_{36}F_6N_2O_8)_n$	Calcd	66.22	4.00	3.09	
	(906.83) _n	Found	66.17	3.89	3.00	
III _e	$(C_{54}H_{44}F_6N_2O_8)_n$	Calcd	67.36	4.61	2.91	
	(962.94) _n	Found	67.17	4.59	2.81	
III _f	$(C_{55}H_{38}F_6N_2O_8)_n$	Calcd	68.18	3.95	2.89	
	(968.91) _n	Found	68.07	3.82	2.77	
III _g	$(C_{55}H_{32}F_{12}N_2O_8)_n$	Calcd	61.35	3.00	2.60	
0	(1076.85) _n	Found	60.39	2.92	2.49	
III _h	$(C_{65}H_{40}F_6N_2O_8)_n$	Calcd	71.56	3.70	2.57	
	(1091.03) _n	Found	71.32	3.66	3.51	

and various CF_3 -contained bis(ether-amine)s II_{a-h} via a conventional two-step procedure of ring-opening polyaddition at room temperature to form PAA, followed imidization by a mixture of Ac₂O/Py to obtain the corresponding polymers, as shown in Scheme 1. The III series had inherent viscosity ranging from 0.72 to 1.33 dL/g. The elemental analysis of III_{a-h} is listed in Table 1, showing that the measured values are close to the calculated ones. The GPC curves of the III series indicated that the \bar{M}_{w} and \bar{M}_{n} values were available in the range of $7.19 \times 10^4 - 10.6 \times 10^4$ and $4.70 \times 10^4 - 9.62 \times 10^4$, respectively, relative to polystyrene standard. The polydispersity index (PDI) $\bar{M}_{\rm w}/\bar{M}_{\rm n}$ values of the III series were 1.3-1.5 (Table 2). ¹H and ¹³C NMR spectra of III_a are shown in Fig. 2. In case of ¹H NMR spectrum, all the aromatic protons of III_a resonated in the region of 7.11-7.98 ppm and H_h of the *t*-butyl group appeared in upfield. H_{c,h} close to the imide ring appeared at the farthest downfield, and H_b , $H_{m,f}$, $H_{k,k'}$ and $H_{d,e}$ shifted to a higher field due to the electron donating property of aromatic ether. In case of ¹³C NMR spectrum, there should be 30 peaks for III_a , but the carbon C³ overlapping with C¹⁵

 Table 2

 Inherent viscosity and GPC data of polyimides III

Polymer code/ η_{inh} (dL/g)		GPC data of	f poly(ether-imi	de)s ^a
PEI	$\eta_{inh}^{\ b} (dL/g)$	$\bar{M}_{\rm n} \times 10^4$	$\bar{M}_{\rm w} \times 10^4$	$\bar{M}_{\rm w}/\bar{M}_{\rm n}$
III _a	0.78	7.31	9.84	1.4
III _b	1.16	8.40	10.60	1.3
III _c	1.33	7.67	10.06	1.3
III _d	0.79	5.91	8.48	1.4
III _e	0.75	6.80	9.34	1.4
III _f	0.79	7.42	9.75	1.3
IIIg	0.72	4.70	7.19	1.5
III _h	0.73	6.79	9.14	1.4

^a Relative to polystyrene standard, using THF as the eluent.

^b Measured at a polymer concentration of 0.5 g/dL in DMAc at 30 °C.

and C⁵ overlapping with C¹⁷, 28 main signals appeared and the number of C was still consistent with the structure. The aromatic carbons C^{22,22',22'',22'''} were carbonyl group and evidenced in the downfield. The one-carbon C–F coupling constant in this case was 273 Hz of the carbon C²⁸ of the hexafluoroisopropylidene group. The CF₃-attached carbon (C²¹) also showed a quartet centered at about 120 ppm with a smaller coupling constant of about 31 Hz due to the twobond C–F coupling.

Fig. 3 shows ¹H and ¹³C NMR spectra of **III**_g. All the aromatic protons of **III**_g resonated in the region of 6.99–7.98 ppm. Like **III**_a, the H_h of the *t*-butyl group appeared in upfield and the H_{c,c'} is at the farthest downfield, and H_f, H_{d,c}, H_j, and H_i in a higher field. There are 34 main peaks for **III**_g in ¹³C NMR spectrum and the number of carbons was conformed to **III**_g. The aromatic carbons $C^{30,30',30'',30'''}$ were carbonyl group and evidenced in the downfield. The C³¹ and C³² showed clear quartet and the one-carbon C–F coupling constants were 272 Hz. The CF₃-attached carbon C²¹ and C²⁹ also showed a quartet centered with a smaller coupling. The above-cited results evidence that the **III** series has been synthesized successfully.

3.2. Properties of polymer

The color intensities of the polymer were elucidated from the yellowness (b^*), redness (a^*) and lightness (L^*) indices observed by a Macbeth color-eye colorimeter. In this case, we base our judgment of the degree of yellowness on the b^* value. Table 3 shows that all polyimides $\mathbf{III}_{\mathbf{a}-\mathbf{h}}$ with a lower b^* value range from 3.0 to 4.7. The insignificant difference of b^* value in the **III** series arose from either the purity and colorness of diamines or the thickness of polyimide films. Polyimide film would be lighter-colored while the purity of

V Series, R=H; VI series, R=CF₃

Scheme 1. Synthesis of polyimides.

monomer was higher, and the color intensity of monomer was lower, or the thickness of polymer film was thinner. As for the influence on color by the chemical or thermal imidization method, the former can avoids oxidization in the air and thus reduces b^* value, such that $III_a(C)$ is lower than $III_a(H)$ by 2.2. However, it is not obvious influence on imidization methods in the III series. Contrasting the b^* value of the III series and common polyimide, Kapton based on PMDA or light-colored polyimide-V series based on 6FDA, the b^* value of the V series ranging 24.3–33.7 is much smaller than that of Kapton which shows deep yellow to brown. Our laboratory has reported that b^* values were in the range of 6.4–21.2 for the polyimide-IV series [26] in 1999, which was much lighter in color than the V series. Recently, the diamine with the pendent CF₃ groups and the commercially aromatic dianhydrides was synthesized into fluorinated polyimide [20–25]. One of them was based on 6FDA to form the poylimide VI series, whose b^* values were in the range of 5.4–17.6 and much lighter in color than the IV and V series. In this study, we synthesized the III series, whose b^* values were smaller than the VI series'. Fig. 4 shows the comparing results of the III and VI series. As above-mentioned, the III series was the lightest color polyimide. Its degree of colorlessness is almost as the same as that of polyarylate, and was even close to the optical transparency of aliphatic PMMA. The III series also shows

Table 3	
Color coordinates and the cut-off wavelength (λ_0) from UV–vis spectra polyimide	es films

Polymer code	Film thickness (µm)	Color coordin	ates ^a		$\lambda_0 (nm)$	Ref.	
		b^*	<i>a</i> *	L^*			
REF. STD		0.09	-0.02	100.0			
PMMA ^{b,c}	53	1.2	-0.5	100.0			
Polyarylate ^c	51	3.3	-0.77	98.9			
IIIa	36	3.1	-1.7	99.7	374		
III _b	48	3.8	-1.9	99.9	374		
III _c	46	3.6	-1.8	99.8	372		
III _d	63	4.7	-2.0	99.5	376		
III _e	60	4.5	-2.3	99.9	375		
III _f	46	3.1	-1.6	99.8	372		
III _g	62	3.0	-1.5	99.8	371		
III _h	65	3.3	-1.7	99.8	372		
$III_a(H)^b$	43	5.3	-2.0	98.4	375		
IVa		9.85	-5.25	95.9		18	
IV _c		21.2	-8.39	94.8		18	
IV _d		6.43	-4.16	96.3		18	
IV _f		15.4	-2.01	92.0		18	
Va	76	28.7	-10.2	95.0	393		
Vc	42	27.9	-10.6	95	388		
V _f	42	24.3	-8.3	95.6	382		
VI _b	39	14.7	-4.17	99.0	364	21	
VIc	47	17.6	-6.61	99.6	373	22	
VI _d	23	7.1	-2.9	99.9	346		
VI _f	36	11.1	-3.8	99.5	365	24	
VIg	25	5.4	-1.9	100.1	343	25	
VIh	38	6.1	-3.2	99.8	348	26	
Kapton ^c	38	85.1	0.3	90.1	443		

^a L^* is lightness. A positive a^* means red color, while a negative a^* indicated green color. A positive b^* means yellow color, while a negative b^* implies blue color.

^b III_a(H) were obtained by the thermal imidization method with DMAc as solvent. PMMA were obtained with MIBK as solvent.

higher lightness, and their L^* values are over than 99.5%, are lighter than polyarylate and even nearly to PMMA (100%). Moreover, the color intensity of the **III** series could also be elucidated from the cut-off (λ_0) observed in UV–vis absorption spectra. In general, the polyimides are derived from 6FDA (**V** series) with good transmittance than others polyimide already. However, in this study, the λ_0 of the **III** series in the range of 371–376 nm are listed in Table 3. And Fig. 5 shows the UV–vis spectra of the **III** series, which show that the **III** series is the kind of polyimide with high transmittances and are even higher than the **V** series' and kapton's.

To summarize, the colorlessness of the **III** series stems from the structures of dianhydride and diamine. The bis(ether anhydride) with the *t*-butyl group can avoids oxidization and coloration of film, and is effective in preventing the CTC formation between the polymer chain through steric hindrance. In the prior study, this dianhydride had been proven to form colorless polyimides [15]. And bis(ether amine) with the pendent CF_3 group also can reduces CTC formation to form colorless polyimides [21,22]. Therefore, the **III** series combines hindering from CTC formation and reducing oxidization in the synthesis to obtain colorless characteristic.

The solubility of these polymers was tested in various solvents, and the results are summarized in Table 4. III_{a-h} can be dissolved at 10 wt/v% concentration in the amide type solvents such as NMP, DMAc, and DMF. In dioxane and THF containing the ether group and chlorinated solvents of CH₂Cl₂ and CHCl₃, they are all soluble in a 5-10 wt/v% concentration. In the phenolic solvent like *m*-cresol and the basic solvent like Py, the III series is also soluble around 5-10 wt/v% concentration except III_c, which swells in *m*-cresol. This series can also be dissolved in arene solvent, for example $III_{a,b,d}$ and III_{g} were souble in toluene and xylene. The solubility of III_{a-h} is very different in DMSO and ketone solvent. $III_{a,d,e}$ and III_g can be dissolved in MIBK, but others cannot. III_{a,g,h} can be dissolved in DMSO solvent at 10 wt/v% concentration, $III_{c,d,f}$ can at 1 wt/v%. $III_{g,h}$ showed the higher solubility

Fig. 4. Comparison of the yellowness index (b* value) between polyimides III and VI.

than $\mathbf{III}_{\mathbf{f}}$ in DMSO, it attributed to the bulky or asymmetric substitutive group. The 'Ar' with pare-phenylene of $\mathbf{III}_{\mathbf{a},\mathbf{d},\mathbf{e}}$, in DMSO, the solubility is reduced as the *t*-butyl group increases, which is because of the aliphatic *t*-butyl group has difficulty dissolved in DMSO. However, the **III** series is insoluble in alcohol like MeOH and in alkane solvent like heptane. As mentioned above, the **III** series is one kind of highly soluble polyimide, a fact that is attributed to the diamines ($\mathbf{II}_{\mathbf{a}-\mathbf{h}}$), which contain two flexible phenoxy groups and bear the pendent CF₃ group. In addition, there is a *t*-butyl group and ether groups in the dianhydride (**I**), which can disorder the chains and hinder dense chain stacking, thereby reducing the interchain interactions to enhance solubility. III_a and III_g show the excellent solubility in the III series because of the more CF_3 group in the repeat unit.

The mechanical properties for all polymers are obtained in the form of thin films and are summarized in Table 5. \mathbf{III}_{a-h} show a distinct yield point on the stress-strain curve, with the yield strength ranging between 103 and 110 MPa except for $\mathbf{III}_{c,g,h}$. These polymer films had strengths at break of 97–123 MPa, elongations to break of 10–56%, and initial moduli of 2.0–2.6 GPa. Although \mathbf{III}_b contains rigid structure of biphenyl, which shows a yield point at 110 MPa, elongation is 18%, and the highest initial moduli of 2.6 GPa in the **III** series, reflecting that **III**_b has good

Fig. 5. UV-vis spectra of polyimide films III_{a-h} , $III_a(H)$, $V_{a,c,f}$ and Kapton film.

Polymer Code	Solvent ^b												
	NMP DMAc DMF	DMSO	m-Cresol	Py	Dioxane	THF	CH ₂ Cl ₂	CHCl ₃	Aceton	MIBK	Toluene	Xylene	MeOH hep- tane
IIIa	+++++	++++	++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	++++++	
III	++++	I	+++	++++	++++	+++	+++++	++++	S	Ι	I	Ι	I
III	+ + +	+	S	++	++	+ + +	+ +	+ + +	Ι	Ι	++	s	Ι
IIId	+ + +	+	+++++	+++++	+++++	+++++	+++++	+ + +	++++	+ + +	++	++++++	Ι
IIIe	+ + +	Ι	++	++	++	++	+ + +	+ + +	++	+ + +	++	+ + +	Ι
III	+ + +	+	++	+ + +	++	+ + +	+++++	+ + +	Ι	I	++	S	Ι
III	++++	++++	+++++	++++	++++	+++++	+++++	+ + +	++++	+++++	++++	++++	Ι
III,	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	I	I	+ + +	S	I
Qualitative s	olubility was	determined wi	ith as: $+++, 1$	00 mg of poly	mer in 1 mL of	solvent solubl	le (10%); ++,	5%; + = solu	ble, -=insolu	ible, S=swellir	ig under 1%.		1

Solubility of polyimides III

Fable 4

Table 5				
Tensile	properties	of	polyimide	films

Polymer code	Strength at yield (MPa)	Strength at break (MPa)	Elongation to break (%)	Initial mod- ulus (GPa)
III _a	109	104	28	2.3
III _b	110	107	18	2.6
III _c	_	103	56	2.0
III _d	103	97	16	2.1
III _e	104	98	11	2.1
III _f	108	99	19	2.2
IIIg	_	112	10	2.2
III _h	-	123	11	2.4

flexibility. The properties are affected by the structure and molecular weight of the polymer; for instance, III_c shows the highest inherent viscosity and longest elongation.

The thermal behavior data of all polymers are listed in Table 6. DSC experiments rapidly cooled from 400 °C to room temperature produced predominantly amorphous samples, so the $T_{\rm g}$ of all the polyimide could be easily read in the subsequent DSC heating trace. The $T_{\rm g}$ values of these III_{a-h} were in the range of 214–259 °C, depending on the structure of the diamine component, and decreased with the increase in the flexibility of the polymer backbones. When the 'Ar' of the *p*-phenylene structures of III_a, III_d and III_e are compared, the *t*-butyl group of III_d and III_e makes chain rotation difficulty than III_a. Especially for the asymmetrical structure, III_d rotate more difficulty than the symmetrical III_e. Thus, the T_g order is III_d>III_e>III_a. When III_b is compared with III_c, because III_b contain the rigid structure of biphenyl, the structure of III_c is looser as a result of the tetramethylbiphenyl. In this case, III_c shows lower T_{g} than **III_b** does. As the 'Ar' structure containing tetraphenylene-diether, III_f, III_g, and III_h, III_h uneasily rotate by the asymmetrical bulky group, so the T_g of III_h is higher than III_{f} and III_{g} .

The thermal stability of III_{a-h} was evaluated by dynamic TGA conducted at a heating rate of 20 °C/min. The temperatures of 10% weight loss (T_{10}) in nitrogen and air

Table 6Thermal properties of polyimides

Ploymer	$T_{\rm g} (^{\circ}{\rm C})^{\rm a}$	T_{10} (°C) ^b		Char yield (%) ^c
		In N ₂	In air	
III _a	224	509	497	56
III _b	259	516	490	48
III _c	226	468	527	58
III _d	248	496	478	50
IIIe	234	494	485	47
III _f	217	513	506	57
III _g	214	523	516	56
III _h	223	522	504	50

 $^{\rm a}$ Baseline shift in the second heating DSC traces, with a heating rate of 15 °C/min.

 $^{\rm b}$ Temperatures at which 10% weight loss were recorded by TG at a heating rate of 20 $^{\circ}{\rm C/min}.$

^c Residual weight (%) when heated to 800 °C in nitrogen.

 Table 7

 Moisture absorption and dielectric constants of polyimides

Polymer	Film thickness (µm)	Moisture absorp- tion (%)	Dielectric con	stant (Dry)			
			1 kHz	10 kHz	1 MHz	40 MHz	
III _a	48	0.36	3.24	3.24	3.18	3.15	
III _b	28	0.15	3.15	3.16	3.10	3.10	
III _e	82	0.27	3.31	3.30	3.28	3.28	
III _d	67	0.17	3.23	3.32	3.27	3.25	
III _e	55	0.20	3.17	3.14	3.12	3.11	
III _f	66	0.21	3.23	3.21	3.19	3.19	
III _g	36	0.11	2.88	2.81	2.78	2.76	
III _h	56	0.24	2.93	2.85	2.81	2.77	
Kapton	28	0.52	3.89	3.85	3.67	3.69	

atmospheres were determined from original TGA thermograms. The T_{10} values of these III_{a-h} were recorded in the range of 468–523 °C in nitrogen and 478–527 °C in air. They left more than 47% char yield at 800 °C in nitrogen. III_c with tetramethylbiphenyl and $III_{d,e}$ with the *t*-butyl group show lower T_{10} in nitrogen, but others have values above 509 °C. Among the III series, III_c shows the lowest T_{10} in nitrogen but the highest one in the air. The side-chain with methyl group is decomposed easily by heating process. However, when III_c is heated in the air at high temperature, III_c will be easily oxidized to form a free radical, causing cross-linking between intermolecular and delaying the decomposition rate of the polymer.

The dielectric constants results and the moisture absorption of the III series are listed in Table 7. III_{a-h} showed dielectric constants in the range of 2.88-3.64 at 1 kHz lower than kapton. The decreased dielectric constants might be attributed to the presence of the CF₃ groups, which resulted in less efficient chain packing and an increase in the free volume. And the strong electronegativity of fluorine resulted in very low polarizability of the C-F bonds, thereby decreasing the dielectric constant. Therefore, $\mathbf{III}_{\mathbf{g}}$ exhibited the lowest dielectric constants because the aromatic contained hexafluoroisopropylidene group and the higher fluorine content in the repeat unit. The III_{a-h} also exhibited lower moisture absorptions (0.11-0.36%) as a result of the hydrophobicity of the CF_3 group. Moreover, III_g exhibited the lowest moisture in the two series as the above dielectric constants part mentioned, because III_g contained the higher CF_3 group in the repeat unit.

4. Conclusions

A series of colorless polyimides III_{a-h} are synthesized from 2,5-bis(3,4-dicarboxyphenoxy)-*t*-butylbenzene dianhydride (I) with various aromatic bis(ether amine) (II_{a-h}) bearing the pendent trifluoromethyl group via a chemical imidization. The III series shows lighter color and greater transparence than the analogous non-fluorinated polyimides IV series and 6FDA-contained V series. The III series is even more colorless than VI series, which was synthesized from the bis(ether amine) **II** with 6FDA. The transparence of the **III** series is nearly to the well known of PMMA. In addition, the **III** series shows excellent solubility in the organic solvents. They were all soluble in the polar solvent such as NMP, DMAc, DMF, dioxane, THF and chlorinatedsolvent of CH_2Cl_2 and $CHCl_3$ in 5–10 wt/v% concentration. The **III** series also shows good mechanical properties, thermal properties, lower dielectric constants and moisture absorptions.

Acknowledgements

The authors are grateful to the National Science Council of the Republic of China for the support of this work (Grant NSC 93-2216-E-036-003).

References

- Hergenrother PM, Watson KA, Smith Jr JG, Connell JW, Yokota R. Polymer 2002;43:5077.
- [2] Feger C, Khojasteh MM, McGrath JE, editors. Polyimides: chemistry and characterization. Amsterdam: Elsevier; 1994.
- [3] Landis AL, Naselow AB. US Patent 4,645,824; 1987.
- [4] Tamai S, Ohta M, Kawashima S, Oikawa H, Ohkoshi K, Yamaguchi A. European Patent 234,882; 1987.
- [5] Ando S, Sawada T, Inoue Y. Electron Lett 1993;29:2143.
- [6] Hsiao SH, Yang CP, Lin WL. Macromol Chem Phys 1999;200:1428.
- [7] Yang CP, Su YY. Polymer 2003;44:6311.
- [8] Reddy DS, Chou CH, Shu CF, Lee GH. Polymer 2003;44:557.
- [9] Li X, Li Y, Tong Y, Shi L, Liu X. Macromolecules 2003;36:5537.
- [10] Yin DX, Li YF, Yang HX, Yang SF, Fan L, Liu JG. Polymer 2005;46: 3119.
- [11] Rogers FE. US Patent 3,356,648; 1964.
- [12] Dinc-Hart RA, Wright WW. Makromol Chem 1971;143:189.
- [13] Li F, Fang S, Ge JJ, Honigfort PS, Chen JC, Harris FW, et al. Polymer 1999;40:4571.
- [14] Qu W, Ko TZ, Vora RH, Chung TS. Polymer 2001;42:6393.
- [15] Yang CP, Yang HW. US Patent 6,093,790; 2000.
- [16] Yang CP, Hsiao SH, Wu KL. Polymer 2003;44:6393.
- [17] Yang CP, Hsiao SH, Yang HW. Makromol Chem Phys 2000;201:409.
- [18] Xie K, Zhang SY, Liu JG, He MH, Yang SY. J Polym Sci Part A: Polym Chem 2001;39:2581.

- [19] Takashi K, Atsushi S, Shoji T. Jan Kokai Tokyo Koho: Mitsui Chemical Industry Co; 2000, 297,067.Takashi K, Atsushi S, Shoji T. Chem Abstr 2000;133:322563h.
- [20] Yang CP, Hsiao SH, Hsu MF. J Polym Sci Part A: Polym Chem 2002; 40:524.
- [21] Yang CP, Hsiao SH, Chen KH. Polymer 2002;43:5095.
- [22] Yang CP, Hsiao FZ. J Polym Sci Part A: Polym Chem 2004;42:2272.
- [23] Yang CP, Chen RS, Chen KH. J Apply Polymer Sci 2005;95:922.
- [24] Yang CP, Chen RS, Chen KH. J Polym Sci Part A: Polym Chem 2003; 41:922.
- [25] Yang CP, Chiang HC. Colloid Polym Sci 2004;182:1347.
- [26] Yang CP, Hsiao SH. US Patent 5,977,289; 1999.